Math 304 (Spring 2015) - Homework 4

Please note that this homework has two pages. There are 5 problems in total.

Problem 1.

Determine whether the following sets are subspaces of \mathbb{R}^2 . Explain why!

(1) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1 + x_2 = 0 \right\}$ (2) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1 x_2 = 0 \right\}$ (3) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1 + x_2 = 1 \right\}$ (4) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid x_1^2 + x_2^2 = 1 \right\}$

Solution:

- (1) Yes, it is a subspace. (I skip the details).
- (2) No.
- (3) No.
- (4) No.

Problem 2.

Let us denote by $M_{2\times 2}(\mathbb{R})$ the set of all (2×2) matrices whose entries are all real numbers. In the textbook, $M_{2\times 2}(\mathbb{R})$ is also denoted by $\mathbb{R}^{2\times 2}$. We know that $M_{2\times 2}(\mathbb{R})$ is a vector space. Now determine whether the following sets are subspaces of $M_{2\times 2}(\mathbb{R})$. Explain why!

- (1) The set of all (2×2) upper triangular matrices.
- (2) The set of all (2×2) nonsingular matrices.
- (3) The set of all (2×2) symmetric matrices.
- (4) The set of all (2×2) matrices with determinant equal to 1.

Solution: I skip the details.

- (1) Yes.
- (2) No.
- (3) Yes.
- (4) No.

Problem 3.

- (a) Let \mathbb{P}_3 be the vector space of all polynomials with degree less than or equal to 3. Determine whether the following sets are subspaces of \mathbb{P}_3 .
 - (1) The set of all polynomials p(x) in \mathbb{P}_3 such that p(0) = 0.
 - (2) The set of all polynomials p(x) in \mathbb{P}_3 such that p(0) = 1.
- (b) Let $C[-\pi,\pi]$ be the vector space of all continuous functions on the closed interval $[-\pi,\pi]$. Determine whether the following sets are subspaces of $C[-\pi,\pi]$.
 - (1) The set of all *odd* functions in $C[-\pi, \pi]$.
 - (2) The set of functions f(x) in $C[-\pi, \pi]$ such that $f(-\pi) = f(\pi)$.

Solution:

- (a) (1) Yes.
 - (2) No.
- (b) (1) Yes.
 - (2) Yes.

Problem 4.

Determine whether the following vectors form a spanning set of \mathbb{R}^3 .

$$\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\4\\3 \end{pmatrix}$$

Solution: We need to determine whether every vector $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ of \mathbb{R}^3 is a linear combination of

$$\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\4\\3 \end{pmatrix}$$

Consider the linear system

$$\begin{bmatrix} 1 & 0 & 1 & | & a \\ 3 & 2 & 4 & | & b \\ 2 & 3 & 3 & | & c \end{bmatrix}$$

The coefficient matrix

$$\begin{pmatrix} 1 & 0 & 1 \\ 3 & 2 & 4 \\ 2 & 3 & 3 \end{pmatrix}$$

is nonsingular (you need to give details here), so the system always has a unique solution. So

$$\begin{pmatrix} 1\\3\\2 \end{pmatrix}, \begin{pmatrix} 0\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\4\\3 \end{pmatrix}$$

span \mathbb{R}^3 .

Problem 5.

Find the null space of the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 & 2\\ 2 & 2 & -3 & 1\\ -1 & -1 & 0 & -5 \end{pmatrix}$$

Solution: The row echelon form of A is

$$\begin{pmatrix}
1 & 1 & -1 & 2 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

So the null space of A is

$$\alpha \begin{pmatrix} -1\\1\\0\\0 \end{pmatrix} + \beta \begin{pmatrix} -5\\0\\-3\\1 \end{pmatrix}$$